Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 132: 111946, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552292

RESUMEN

Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.


Asunto(s)
Células Endoteliales , Monocrotalina , Poliaminas , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Purinas , Ratas Sprague-Dawley , Espermidina , Remodelación Vascular , Animales , Espermidina/farmacología , Espermidina/uso terapéutico , Purinas/farmacología , Poliaminas/metabolismo , Masculino , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Remodelación Vascular/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Purina-Nucleósido Fosforilasa/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Modelos Animales de Enfermedad , Humanos
2.
Mol Brain ; 17(1): 15, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443995

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Espermidina/farmacología , Espermidina/uso terapéutico , Pez Cebra , Apoptosis , Autofagia , Modelos Animales de Enfermedad
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167083, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367900

RESUMEN

OBJECTIVE: Spermidine (SPD) is an anti-aging natural substance, and it exerts effects through anti-apoptosis and anti-inflammation. However, the specific protective mechanism of SPD in osteoarthritis (OA) remains unclear. Here, we explored the role of SPD on the articular cartilage and the synovial tissue, and tested whether the drug would regulate the polarization of synovial macrophages by in vivo and in vitro experiments. METHODS: By constructing an OA model in mice, we preliminarily explored the protective effect of SPD on the articular cartilage and the synovial tissue. Meanwhile, we isolated and cultured human primary chondrocytes and bone marrow-derived macrophages (BMDMs), and prepared a conditioned medium (CM) to explore the specific protective effect of SPD in vitro. RESULTS: We found that SPD alleviated cartilage degeneration and synovitis, increased M2 polarization and decreased M1 polarization in synovial macrophages. In vitro experiments, SPD inhibited ERK MAPK and p65/NF-κB signaling in macrophages, and transformed macrophages from M1 to M2 subtypes. Interestingly, SPD had no direct protective effect on chondrocytes in vitro; however, the conditioned medium (CM) from M1 macrophages treated with SPD promoted the anabolism and inhibited the catabolism of chondrocytes. Moreover, this CM markedly suppressed IL-1ß-induced p38/JNK MAPK signaling pathway activation in chondrocytes. CONCLUSIONS: This work provides new perspectives on the role of SPD in OA. SPD does not directly target chondrocytes, but can ameliorate the degradation of articular cartilage through regulating M1/M2 polarization of synovial macrophages. Hence, SPD is expected to be the potential therapy for OA.


Asunto(s)
Osteoartritis , Espermidina , Humanos , Ratones , Animales , Espermidina/farmacología , Espermidina/metabolismo , Espermidina/uso terapéutico , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo , Macrófagos/metabolismo
4.
J Nutr Biochem ; 125: 109569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185346

RESUMEN

Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and ß3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and ß3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.


Asunto(s)
Tejido Adiposo Pardo , Espermidina , Ratones , Animales , Espermidina/farmacología , Espermidina/metabolismo , Espermidina/uso terapéutico , Tejido Adiposo Pardo/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Obesos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tejido Adiposo/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Termogénesis , Tejido Adiposo Blanco/metabolismo , Ratones Endogámicos C57BL
5.
Cell Oncol (Dordr) ; 47(1): 321-341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37684512

RESUMEN

PURPOSE: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets. METHODS: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay. RESULTS: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis. CONCLUSIONS: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Humanos , Gemcitabina , Cisplatino/farmacología , Cisplatino/uso terapéutico , Espermina/uso terapéutico , Espermidina/metabolismo , Espermidina/uso terapéutico , Línea Celular Tumoral , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Poliaminas/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico
6.
Int Immunopharmacol ; 122: 110593, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423156

RESUMEN

BACKGROUND: Spermidine (SPD) is a natural polyamine that shows beneficial effects on osteoarthritis (OA). However, the effect of SPD on cartilage inflammation remains unknown. This study aimed to investigate the potential mechanisms underlying the protective effect of SPD against OA-induced articular cartilage degradation. METHOD: SW1353 human chondrocytes were treated with hydrogen peroxide and lipopolysaccharide to induce models of inflammation and oxidative stress, followed by different dose of SPD intervention. Moreover, mice that underwent anterior cruciate ligament transection were bred and treated with SPD. The effects of SPD were observed using a CCK-8 kit, real-time polymerase chain reaction, immunoblotting, and immunofluorescent assays. RESULT: SPD significantly increased the expression of antioxidant proteins, chondrogenic genes, and inflammatory factors both in vivo and in vitro. And injury of the mouse cartilage was also reduced by SPD. Moreover, SPD activated the Nrf2/KEAP1 pathway and inhibited STAT3 phosphorylation. BRG1 expression was decreased in osteoarthritic mouse cartilage, whereas SPD treatment caused an upregulation. However, when BRG1 was specifically inhibited by an adeno-associated virus and small interfering RNA, the antioxidant and anti-inflammatory effects of SPD were significantly diminished both in vitro and in vivo. CONCLUSION: We found that SPD ameliorated cartilage damage in OA by activating the BRG1-mediated Nrf2/KEAP1 pathway. SPD and BRG1 may provide new therapeutic options or targets for the treatment of OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , Espermidina/farmacología , Espermidina/uso terapéutico , Espermidina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Inflamación/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos , Cartílago Articular/metabolismo , Factor de Transcripción STAT3/metabolismo
7.
Int Immunopharmacol ; 119: 110166, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37104918

RESUMEN

BACKGROUND: Aryl hydrocarbon receptor (AhR) activation promotes intestinal barrier repair and enhances the gut mucosal barrier function in inflammatory bowel diseases (IBD). Spermidine is beneficial in several murine models of IBD and may affect AhR activity. However, the precise effects of spermidine on the intestinal barrier and AhR remain unclear. This study was designed to investigate whether spermidine affects AhR and gut barrier function in IBD models as well as, its underlying mechanism. METHODS: We used dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mice, as well as, Caco2 cells incubated with TNF-α and IFN-γ to establish multiple IBD models, followed by spermidine intervention. Alcian blue/Periodic acid-Schiff (AB/PAS) staining, Fluorescein isothiocyanate (FITC)-dextran permeability assay, transepithelial electrical resistance (TER), tight junction protein (TJs) expression, and 16S rRNA scope in situ hybridization were performed to assess intestinal barrier function. AhR expression and the associated pathways were measured. AhR-targeted adeno-associated virus (AAV) and siRNA were used to explore the related molecular mechanisms. RESULTS: Spermidine significantly attenuated the increased intestinal permeability, decreased TER, abnormal distribution of TJs in colitis, and bacterial translocation from the gut tract. Additionally, it significantly increased AhR and Nrf2 expression and inhibited STAT3 phosphorylation. However, the protective effects of spermidine and the related alterations in pathway proteins were largely abolished by the specific inhibition of AhR. CONCLUSION: Our study demonstrated that spermidine rescues intestinal barrier defects in mice with colitis via the AhR-Nrf2 and AhR-STAT3 pathways, providing a potential therapeutic agent for IBD and other conditions associated with dysregulated gut barrier function.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Células CACO-2 , Espermidina/uso terapéutico , Espermidina/metabolismo , Espermidina/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , ARN Ribosómico 16S , Uniones Estrechas , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal , Transducción de Señal , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factor de Transcripción STAT3/metabolismo
8.
Liver Int ; 43(6): 1307-1319, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36892418

RESUMEN

BACKGROUND AND AIMS: Liver diseases present a wide range of fibrosis, from fatty liver with no inflammation to steatohepatitis with varying degrees of fibrosis, to established cirrhosis leading to HCC. In a multivariate analysis, serum levels of spermidine were chosen as the top metabolite from 237 metabolites and its levels were drastically reduced along with progression to advanced steatohepatitis. Our previous studies that showed spermidine supplementation helps mice prevent liver fibrosis through MAP1S have prompted us to explore the possibility that spermidine can alleviate or cure already developed liver fibrosis. METHODS: We collected tissue samples from patients with liver fibrosis to measure the levels of MAP1S. We treated wild-type and MAP1S knockout mice with CCl4 -induced liver fibrosis with spermidine and isolated HSCs in culture to test the effects of spermidine on HSC activation and liver fibrosis. RESULTS: Patients with increasing degrees of liver fibrosis had reduced levels of MAP1S. Supplementing spermidine in mice that had already developed liver fibrosis after 1 month of CCl4 induction for an additional 3 months resulted in significant reductions in levels of ECM proteins and a remarkable improvement in liver fibrosis through MAP1S. Spermidine also suppressed HSC activation by reducing ECM proteins at both the mRNA and protein levels, and increasing the number of lipid droplets in stellate cells. CONCLUSIONS: Spermidine supplementation is a potentially clinically meaningful approach to treating and curing liver fibrosis, preventing cirrhosis and HCC in patients.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Cirrosis Hepática , Neoplasias Hepáticas , Animales , Ratones , Autofagia/fisiología , Carcinoma Hepatocelular/patología , Hígado Graso/patología , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Neoplasias Hepáticas/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Espermidina/farmacología , Espermidina/uso terapéutico , Espermidina/metabolismo , Humanos
9.
Biochem Biophys Res Commun ; 648: 44-49, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724559

RESUMEN

A previous study revealed that treatment with the anticoagulant heparin attenuated concanavalin A (ConA)-induced liver injury. The administration of spermidine (SPD) increased urokinase-type plasminogen activator (uPA) levels in the serum. uPA is clinically used for the treatment of some thrombotic diseases such as cerebral infarction. Therefore, SPD may attenuate ConA-induced liver injury that is exacerbated by blood coagulation. The present study investigated the effect of SPD on liver injury in mice with autoimmune hepatopathy induced by ConA. A model of liver injury was created by intravenous injection of ConA into mice. SPD was administered in free drinking water and was biochemically and pathologically examined over time. The administration of SPD to ConA-treated mice significantly reduced liver injury. However, SPD treatment upregulated the mRNA expression of TNF-α and IFN-ϒ in the livers of ConA-treated mice. In contrast, the mRNA expression of tissue factor in the livers of SPD-treated mice was decreased after ConA injection. The frequency of lymphocytes and lymphocyte activation were not affected by SPD administration in ConA-treated mice. SPD treatment increased uPA levels in the serum and decreased the level of D-dimer in ConA-treated mice. Moreover, SPD decreased fibrin in the livers of ConA-treated mice. These results indicated that SPD treatment increased anticoagulant ability by increasing of uPA and attenuated ConA-induced liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratones , Concanavalina A/farmacología , Espermidina/farmacología , Espermidina/uso terapéutico , Espermidina/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Anticoagulantes/farmacología , ARN Mensajero/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
10.
J Biomed Sci ; 29(1): 106, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36536341

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. It has been proposed that epigenetic modification and transcriptional dysregulation may contribute to motor neuron death. In this study, we investigate the basis for therapeutic approaches to target lysine-specific histone demethylase 1 (LSD1) and elucidate the mechanistic role of LSD1-histone H3K4 signaling pathway in ALS pathogenesis. METHODS: In order to examine the role of spermidine (SD), we administered SD to an animal model of ALS (G93A) and performed neuropathological analysis, body weight, and survival evaluation. RESULTS: Herein, we found that LSD1 activity is increased while levels of H3K4me2, a substrate of LSD1, is decreased in cellular and animal models of ALS. SD administration modulated the LSD1 activity and restored H3K4me2 levels in ChAT-positive motor neurons in the lumbar spinal cord of ALS mice. SD prevented cellular damage by improving the number and size of motor neurons in ALS mice. SD administration also reduced GFAP-positive astrogliogenesis in the white and gray matter of the lumbar spinal cord, improving the neuropathology of ALS mice. Moreover, SD administration improved the rotarod performance and gait analysis of ALS mice. Finally, SD administration delayed disease onset and prolonged the lifespan of ALS (G93A) transgenic mice. CONCLUSION: Together, modulating epigenetic targets such as LSD1 by small compounds may be a useful therapeutic strategy for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Espermidina/metabolismo , Espermidina/uso terapéutico , Histonas/metabolismo , Superóxido Dismutasa , Neuronas Motoras , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones Transgénicos , Modelos Animales de Enfermedad
11.
Oncoimmunology ; 11(1): 2146855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387057

RESUMEN

Writing in Science, Al Habsi et al. show that spermidine boosts the efficacy of monoclonal antibodies targeting PD-L1 in aged tumor-bearing mice by enhancing fatty acid oxidation in CD8 T cells. These results open new therapeutic avenues to improve the effectiveness of anticancer immunotherapies in aged patients.


Asunto(s)
Inmunoterapia , Espermidina , Ratones , Animales , Monitorización Inmunológica , Espermidina/farmacología , Espermidina/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , Recuento de Linfocitos
12.
Mol Med ; 28(1): 103, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058905

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is still a critical problem in clinical practice, with a heavy burden for national health system around the world. It is notable that sepsis is the predominant cause of AKI for patients in the intensive care unit and the mortality remains considerably high. The treatment for AKI relies on supportive therapies and almost no specific treatment is currently available. Spermidine is a naturally occurring polyamine with pleiotropic effects. However, the renoprotective effect of spermidine and the underlying mechanism remain elusive. METHODS: We employed mice sepsis-induced AKI model and explored the potential renoprotective effect of spermidine in vivo with different administration time and routes. Macrophage depleting was utilized to probe the role of macrophage. In vitro experiments were conducted to examine the effect of spermidine on macrophage cytokine secretion, NLRP3 inflammasome activation and mitochondrial respiration. RESULTS: We confirmed that spermidine improves AKI with different administration time and routes and that macrophages serves as an essential mediator in this protective effect. Meanwhile, spermidine downregulates NOD-like receptor protein 3 (NLRP3) inflammasome activation and IL-1 beta production in macrophages directly. Mechanically, spermidine enhances mitochondrial respiration capacity and maintains mitochondria function which contribute to the NLRP3 inhibition. Importantly, we showed that eukaryotic initiation factor 5A (eIF5A) hypusination plays an important role in regulating macrophage bioactivity. CONCLUSIONS: Spermidine administration practically protects against sepsis-induced AKI in mice and macrophages serve as an essential mediator in this protective effect. Our study identifies spermidine as a promising pharmacologic approach to prevent AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Macrófagos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/farmacología , Factores de Iniciación de Péptidos/uso terapéutico , Respiración , Sepsis/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Espermidina/uso terapéutico
13.
Med Sci (Basel) ; 10(3)2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36135836

RESUMEN

The polyamines putrescine, spermidine and spermine are nutrient-like polycationic molecules involved in metabolic processes and signaling pathways linked to cell growth and cancer. One important pathway is the PI3K/Akt pathway where studies have shown that polyamines mediate downstream growth effects. Downstream of PI3K/Akt is the mTOR signaling pathway, a nutrient-sensing pathway that regulate translation initiation through 4EBP1 and p70S6K phosphorylation and, along with the PI3K/Akt, is frequently dysregulated in breast cancer. In this study, we investigated the effect of intracellular polyamine modulation on mTORC1 downstream protein and general translation state in two breast cancer cell lines, MCF-7 and MDA-MB-231. The effect of mTORC1 pathway inhibition on the growth and intracellular polyamines was also measured. Results showed that polyamine modulation alters 4EBP1 and p70S6K phosphorylation and translation initiation in the breast cancer cells. mTOR siRNA gene knockdown also inhibited cell growth and decreased putrescine and spermidine content. Co-treatment of inhibitors of polyamine biosynthesis and mTORC1 pathway induced greater cytotoxicity and translation inhibition in the breast cancer cells. Taken together, these data suggest that polyamines promote cell growth in part through interaction with mTOR pathway. Similarly intracellular polyamine content appears to be linked to mTOR pathway regulation. Finally, dual inhibition of polyamine and mTOR pathways may provide therapeutic benefits in some breast cancers.


Asunto(s)
Neoplasias de la Mama , Poliaminas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Poliaminas/metabolismo , Poliaminas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Putrescina/metabolismo , Putrescina/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Proteínas Quinasas S6 Ribosómicas 70-kDa/uso terapéutico , Espermidina/metabolismo , Espermidina/farmacología , Espermidina/uso terapéutico , Espermina/metabolismo , Espermina/farmacología , Espermina/uso terapéutico , Serina-Treonina Quinasas TOR/uso terapéutico
14.
Biosensors (Basel) ; 12(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005029

RESUMEN

The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.


Asunto(s)
Neoplasias , Poliaminas , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Poliaminas/metabolismo , Poliaminas/uso terapéutico , Putrescina/metabolismo , Putrescina/uso terapéutico , Espermidina/metabolismo , Espermidina/uso terapéutico , Espermina/metabolismo , Espermina/uso terapéutico
15.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780157

RESUMEN

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Espermidina , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Espermidina/farmacología , Espermidina/uso terapéutico
16.
JAMA Netw Open ; 5(5): e2213875, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35616942

RESUMEN

Importance: Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective: To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants: This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions: One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures: Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results: A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance: In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration: ClinicalTrials.gov Identifier: NCT03094546.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neurodegenerativas , Anciano , Animales , Biomarcadores , Cognición/fisiología , Disfunción Cognitiva/tratamiento farmacológico , Suplementos Dietéticos , Femenino , Humanos , Inflamación , Espermidina/farmacología , Espermidina/uso terapéutico
17.
Reprod Biol Endocrinol ; 20(1): 45, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255928

RESUMEN

Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.


Asunto(s)
Diabetes Mellitus Experimental , Glucólisis/efectos de los fármacos , Infertilidad Masculina , Espermatogénesis/efectos de los fármacos , Espermidina/farmacología , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Semen , Espermatogénesis/fisiología , Espermidina/uso terapéutico , Estreptozocina , Testículo/efectos de los fármacos , Testículo/metabolismo
18.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767785

RESUMEN

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Colitis/genética , Neoplasias del Colon/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Espermidina/uso terapéutico , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Azoximetano , Colitis/inducido químicamente , Colitis/enzimología , Colitis/prevención & control , Colitis Ulcerosa/enzimología , Colitis Ulcerosa/genética , Colon/enzimología , Colon/patología , Neoplasias del Colon/prevención & control , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/enzimología , Mucosa Intestinal/patología , Masculino , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Lesiones Precancerosas/enzimología , Factores Protectores , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Espermidina/metabolismo , Espermidina/farmacología , Pérdida de Peso/efectos de los fármacos , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Poliamino Oxidasa
19.
Aging Cell ; 20(6): e13377, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33969611

RESUMEN

Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD) and aging individuals. It has been established that vascular calcification is a gene-regulated biological process resembling osteogenesis involving osteogenic differentiation. However, there is no efficient treatment available for vascular calcification so far. The natural polyamine spermidine has been demonstrated to increase life span and protect against cardiovascular disease. It is unclear whether spermidine supplementation inhibits vascular calcification in CKD. Alizarin red staining and quantification of calcium content showed that spermidine treatment markedly reduced mineral deposition in both rat and human vascular smooth muscle cells (VSMCs) under osteogenic conditions. Additionally, western blot analysis revealed that spermidine treatment inhibited osteogenic differentiation of rat and human VSMCs. Moreover, spermidine treatment remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in rats with CKD. Furthermore, treatment with spermidine induced the upregulation of Sirtuin 1 (SIRT1) in VSMCs and resulted in the downregulation of endoplasmic reticulum (ER) stress signaling components, such as activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP). Both pharmacological inhibition of SIRT1 by SIRT1 inhibitor EX527 and knockdown of SIRT1 by siRNA markedly blocked the inhibitory effect of spermidine on VSMC calcification. Consistently, EX527 abrogated the inhibitory effect of spermidine on aortic calcification in CKD rats. We for the first time demonstrate that spermidine alleviates vascular calcification in CKD by upregulating SIRT1 and inhibiting ER stress, and this may develop a promising therapeutic treatment to ameliorate vascular calcification in CKD.


Asunto(s)
Insuficiencia Renal Crónica/tratamiento farmacológico , Espermidina/uso terapéutico , Calcificación Vascular/tratamiento farmacológico , Animales , Humanos , Masculino , Ratas , Transducción de Señal , Sirtuina 1/metabolismo , Espermidina/farmacología
20.
Acta Pharmacol Sin ; 42(3): 361-369, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32694754

RESUMEN

Intrauterine hypoxia (IUH) affects the growth and development of offspring. It remains unclear that how long the impact of IUH on cognitive function lasts and whether sexual differences exist. Spermidine (SPD) has shown to improve cognition, but its effect on the cognitive function of IUH offspring remains unknown. In the present study we investigated the influence of IUH on body weight and neurological, motor and cognitive function and the expression of APP, BACE1 and Tau5 proteins in brain tissues in 2- and 4-month-old IUH rat offspring, as well as the effects of SPD intervention on these parameters. IUH rat model was established by treating pregnant rats with intermittent hypoxia on gestational days 15-21, meanwhile pregnant rats were administered SPD (5 mg·kg-1·d-1;ip) for 7 days. Neurological deficits were assessed in the Longa scoring test; motor and cognitive functions were evaluated in coat hanger test and active avoidance test, respectively. We found that IUH decreased the body weight of rats in both sexes but merely impaired motor and cognitive function in female rats without changing neurological function in the rat offspring of either sex at 2 months of age. For 4-month-old offspring, IUH decreased body weight in males and impaired neurological function and increased cognitive function in both sexes. IUH did not affect APP, BACE1 or Tau5 protein expression in either the hippocampus or cortex of all offspring; however, it increased the cortical Tau5 level in 2-month-old female offspring. Surprisingly, SPD intervention prevented weight loss. SPD intervention reversed the motor and cognitive decline caused by IUH in 2-month-old female rat offspring. Taken together, IUH-induced cognitive decline in rat offspring is sex-dependent during puberty and can be recovered in adult rats. SPD intervention improves IUH-induced cognitive and neural function decline.


Asunto(s)
Cognición/fisiología , Disfunción Cognitiva/tratamiento farmacológico , Hipoxia/fisiopatología , Espermidina/uso terapéutico , Útero/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Cognición/efectos de los fármacos , Disfunción Cognitiva/etiología , Femenino , Hipoxia/complicaciones , Masculino , Embarazo , Ratas Wistar , Factores Sexuales , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA